Last edited by Kigashakar
Friday, August 7, 2020 | History

2 edition of Discrimination of hue as a function of wave length. found in the catalog.

Discrimination of hue as a function of wave length.

Gösta Ekman

Discrimination of hue as a function of wave length.

by Gösta Ekman

  • 61 Want to read
  • 32 Currently reading

Published in [Stockholm] .
Written in English

    Subjects:
  • Color-sense

  • Edition Notes

    SeriesUniversity of Stockholm. Reports from the Psychological Laboratory, no. 19
    Classifications
    LC ClassificationsQP481 E45
    The Physical Object
    Pagination5p.
    ID Numbers
    Open LibraryOL18331904M

    As a measure of how discrimination training affected overall color preference, we also compared the mean hue value bees landed upon. Finally, in perhaps the most direct assessment of a bee's uncertainty about hue, we measured the extent of aggregate bias away from the S– (‘area shift’): the mean proportion of landings on the four test.   The book explores an alternative basis for understanding human color vision based on the very simple principle that the physical structure of the cone color receptors spatially separates light by wavelength, each cone acting as a miniature s: 1.

    Estimating that the usable part of the visible spectrum is nm, with wavelength L (in nm) and hue value H (in degrees), you can improvise this: L = - / * H is the maximum wavelength, is the wavelength range and is the hue range. I think this should be in the right direction but there may of course be room for. In addition, the FM Hue test was performed. The data were collected once every year over 5 years. Over the 5 years, the diabetics show a continual change in the shape of their brightness matching function. Wavelength discrimination ability remains quite stable with time at the long end of the spectrum but is variable at short wavelengths.

    the geometry of color perception. The previous pages have explained three very different methods for defining a color: (1) the measurement of the color stimulus as a spectral emittance or reflectance curve in colorimetry; (2) the proportional responses to the stimulus by the L, M and S cones, represented as a chromaticity diagram; and (3) the subjective description of the color sensation in. Color blindness, also known as color vision deficiency, is the decreased ability to see color or differences in color. Simple tasks such as selecting ripe fruit, choosing clothing, and reading traffic lights can be more challenging. Color blindness may also make some educational activities more difficult. However, problems are generally minor, and most people find that they can adapt.


Share this book
You might also like
The moth book

The moth book

Platform echoes

Platform echoes

Recombinant DNA Technology

Recombinant DNA Technology

Finder

Finder

Nellie Wildchild

Nellie Wildchild

Policy for women and sport

Policy for women and sport

Brick rebound walls in childrens play areas.

Brick rebound walls in childrens play areas.

Intestinal Diseases

Intestinal Diseases

Inside the undergraduate teaching experience

Inside the undergraduate teaching experience

Say it again

Say it again

Discrimination of hue as a function of wave length by Gösta Ekman Download PDF EPUB FB2

Hue discrimination describe the amount of change in wavelength (l + D l) that is required to be able detect a change in hue. For blue and red light, a large change in wavelength is required to detect a change in hue while less than 2 nm change in wavelength is needed for most of the spectrum for a person with normal colour vision (figure 13).

DISCRIMINATION OF HUE AS A FUNCTION OF WAVE LENGTH G OSTA Discrimination of hue as a function of wave length. book University of Stockholm, SR-eden INTRODUCTION AND PROBLEM In a previous investigation (i) five color factors were extra-!-ted from the matrix of subjective similarities between fojirteen spectral e: by: 9.

Twelve sets of directly obtained hue-discrimination thresholds, from König up to Weale, were plotted in a figure and a representative curve as a function of wavelength was determined.

Hue-discrimination in normal colour-vision ' is w, brought to a focus in the form of a spectrum at portions of the spectrum are reflected back by right-angled prisms R, G and B, and return through the optical system to the right-angled prism D where they are reflected on to the photometer prism the instrument is being used as a colorimeter, theseCited by:   Wavelength Discrimination for Point Sources R.

Bedford and G. Wyszecki Journal of the Optical Society of America 48 Crossref. Discrimination of Hue as a Function of Wave Length Gösta Ekman Nordisk Psykologi 8 15 Crossref.

Discrimination of hue as a function of wave lengthCited by: The spectral colour discrimination is presented as a function of wavelength and is in the the wavelengths of antagonistic spectral colours (Fig. 5); the general form of the spectral hue discrimination function (Fig. 8); the number and the qualitative symptoms of colour deficiencies (Fig.

WikiMatrix. The book by Greenacre () is a. Wavelength discrimination was measured in 8 normal observers as a function of test field intensity (–63 td), duration (–5 sec) and dia (–2°) to determine the conditions under which the just noticeable difference (JND) is smallest.

The function was compared with the functions obtained recently with different methods and showed that the wavelength discrimination was best at, and nm spectral regions. The findings were related to generalization gradients, color-naming data and physiological data.

Hue Discrimination and the Similarity of Violet and Purple. Before closing the current discussion, it is perhaps worthwhile exploring the power and utility of the CSM model with a specific example or two.

Perhaps one of the most important things a model of human color vision should be able to do is to explain the basic hue discrimination function. The second issue with human vision is that our ability to perceive CHANGES in hue is also variable, depending on the wavelength.

This is illustrated by the hue discrimination curve shown in the figure below, which compares wavelength of light with the smallest observable difference in hue (expressed as wavelength difference).

In recent research, it has been increasingly necessary to employ an extended wavelength metric to cover the complete hue cycle so as to research or represent data as a function of relative.

Bedford R, Wyszecki G () Wavelength discrimination for point sources. Journal of Optical Society of America – View Article Google Scholar Wright W, Pitt H () Hue-discrimination in normal colour-vision.

Proc Phys Soc – View Article. Abstract. Abstract-Psychophysical measures of hue (wavelength) discrimination and spectral sensitivity were collected over a 3-year-period on a rhesus monkey whose right eye had been exposed to intense.

blue light 10 years prior and had shown a pronounced loss of blue sensitivity in an increment-threshold, spectral-sensitivity task. Hue discrimination describe the amount of change in wavelength (l + D l) that is required to be able detect a change in hue. For blue and red light, a large change in wavelength is required to detect a change in hue while less than 2 nm change in wavelength is needed for most of the spectrum for a person with normal colour vision (figure 13).

Discrimination scores for a constant 10 nm separation of test and training wavelengths were determined between and nm. This measure of the spectral dependence of wavelength discrimination shows a deterioration of performance at the red end of the spectrum but not in the blue and violet.

Color discrimination functions for three observers were plotted in the short-wavelength region of the spectrum. The method of constant stimulus differences was used. Comparisons between the present results and earlier results are reported.

Sensitivity proved more. Wavelength Discrimination. Wavelength discrimination thresholds were measured with a spatial, two-alternative forced-choice method combined with a two-down, one-up staircase procedure. Threshold was defined by the geometric mean of the last four of six reversals and corresponded to the 71% correct point of the psychometric function.

Studies of color discrimination are often based on the rather reckless assumption that nicker photometry is a methodological panacea. In each of them the author has compromised in some way with this essential methodological difficulty.

Wavelength discrimination. Because an individual’s UAD for a particular viewing condition has a uniform metric, it can be used to derive a wavelength- discrimination function []. Participants’ functions were derived by measuring, for each stimulus, (along the spline function fitted to each individual's UAD – see above) the change in.

Wavelength discrimination. Because an individual’s UAD for a particular viewing condition has a uniform metric, it can be used to derive a wavelength- discrimination function [23–27]. Participants’ functions were derived by measuring, for each stimulus, (along the spline function fitted to each individual's UAD – see above) the change.

Hue discrimination. The term hue discrimination is used to describe the change in wavelength that must be obtained in order for the eye to detect a shift in hue. An expression λ + Δλ defines the required wavelength adjustment that must take place. A small (wavelength causes most spectral colors to appear to take on a.phenomenon found in discrimination learning experiments known as peak shift (Hanson, ; Shettleworth, ).

These ‘shifts’ occur when bees are trained to respond to one stimulus (‘S+’, e.g. light with a wavelength of nm that provides a sucrose reward) and to withhold responses to a second, similar, stimulus (‘S–’, e.g.Color (American English), or colour (Commonwealth English), is the characteristic of visual perception described through color categories, with names such as red, orange, yellow, green, blue, or perception of color derives from the stimulation of photoreceptor cells (in particular cone cells in the human eye and other vertebrate eyes) by electromagnetic radiation (in the visible.